## Working with Exponents

The following are a list of many of the rules associated with exponents. I've found this an incredibly useful cheatsheet for helping perform simplifications.

*Also make sure to remember your order of operations when working with exponents*

**Product**

Rule:

$${x^r} \cdot {x^2} = X^{r+s}$$

Example:

$$x^3 \cdot x^5 = x^8$$

**Quotient**

Rule:

$$\frac{x^r}{x^s} = x^{r-s}$$

Example:

$$\frac{a^6}{a^2} = 2^{4}$$

**Power of a Power**

Rule:

$$\left( x^r\right) ^s = x^{rs}$$

Example:

$$\left( z^2\right) ^5 = z^{10}$$

**Power of a Product**

Rule:

$$\left( x \cdot y\right) ^r = x^r \cdot y^r$$

Example:

$$\left( a \cdot b\right) ^2 = a^2 \cdot b^2$$

**Power of a Quotient**

Rule:

$$\left( \frac{x}{y}\right) ^r = \frac{x^r}{y^r}$$

Example:

$$\left( \frac{5}{7}\right) ^3 = \frac{5^3}{7^3}$$

**Negative Exponent**

Rule:

$$x^{-r} = \frac{1}{x^r}$$

Example:

$$b^{-6} = \frac{1}{b^6}$$

**Zero Exponent**

Rule:

$$x^0 = 1, \textrm{if } x \neq 0$$

Example:

$$7^0 = 1$$

**Negative Exponent with Quotient**

Rule:

$$\left(\frac{x}{y}\right)^{-r} = \left(\frac{y}{x}\right)^r$$

Example:

$$\left( \frac{1}{2}\right) ^{-3} = \left( \frac{2}{1}\right) ^3 = 2^3$$

$$5^{-2} = \left( \frac{5}{1}\right) ^{-2} = \left( \frac{1}{5}\right) ^2$$

*If you liked what you read, subscribe to my newsletter and you will get my cheat sheet on Python, Machine Learning (ML), Natural Language Processing (NLP), SQL, and more. You will receive an email each time a new article is posted.*

## Comments !